top of page

Continuing Education

Public·15 members
Everett Miller
Everett Miller

Molen - Mechanical Delusion

The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other.

Molen - Mechanical Delusion

Preemptive analgesia involves introducing an analgesic before noxious stimulation. Electroacupuncture (EA) activates descending mechanisms that modulate nociceptive inputs into the spinal dorsal horn. This study evaluated whether preoperative EA is more effective than postoperative EA in reducing incision pain in rats. The nociceptive threshold to mechanical stimulation was utilized to examine the effects of an intraperitoneal injection of saline (0.1 mL/kg) or naloxone (1 mg/kg) on antinociception induced by a 20-minute period of 2-Hz or 100-Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints before surgical incision, or 10 minutes after or 100 minutes after surgical incision of the hind paw. The extent of mechanical hyperalgesia after the incision was significantly attenuated by the application of 100-Hz EA preoperatively, but not by its application at 10 minutes or 100 minutes postoperatively. By contrast, 2-Hz EA was effective against postoperative hyperalgesia when applied 10 minutes or 100 minutes after surgery but not when it was applied preoperatively. Only the effect of 2-Hz EA applied 10 minutes after surgery was sensitive to naloxone. The present study showed for the first time that 100-Hz EA, but not 2-Hz EA, exerts a nonopioidergic preemptive effect against postincision pain in rats. Copyright 2016. Published by Elsevier B.V.

To investigate the effect of unmodulated 5-kHz alternating current on mechanical pain threshold (MPT), heat pain threshold (HPT), tactile threshold (TT), and peripheral nerve conduction (PNC) compared with transcutaneous electrical nerve stimulation (TENS) and sham stimulation. National referral center. Randomized, double-blind, placebo-controlled crossover trial. Healthy volunteers (N=38). No dropouts or adverse events were reported. TENS, unmodulated 5-kHz currents, and sham stimulation were applied on the radial nerve for 20 minutes with a 24-hour washout period between them and concealed intervention allocation. Four measures were taken: before, during, and 2 after the interventions. Algometry was used to assess MPT, a Peltier thermode for HPT using the method of limits, Von Frey filaments for TT, and radial nerve compound action potential. No differences were observed on MPT, HPT, and PNC when 5-kHz current and TENS were compared. However, TT increased 56.2mN (95% confidence interval [CI], 28.8-83.6) in the TENS group compared with the 5-kHz current group during intervention. Compared with sham stimulation during intervention, MPT increased 4.7N (95% CI, 0.3-9.2) using 5-kHz current and 10.4N (95% CI, 3.5-17.3) with TENS. TT increased 17.2mN (95% CI, 4.7-29.7) with 5-kHz current and 73.4mN (95% CI, 47.5-99.2) with TENS. However, HPT increased 1.0C (95% CI, 0.2-2.0) only with TENS. For the PNC, no differences were found among the 3 groups. Unmodulated 5-kHz current produced an increase in somatosensory thresholds that was greater than placebo but not when compared with TENS; however, participants perceived 5-kHz currents to be more comfortable and showed more habituation to them. Copyright 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

Propagation of waves in the airways is important in flow limitation as well as in oscillation mechanics. In five excised calf tracheae, we measured phase propagation velocity (c) and input impedance with open (Zop) or closed end (Zcl) for frequencies (f) between 16 and 1,600 Hz at two axial tensions [nonstretched (TN) and stretched (TS); TS > TN]. From 16 to 64 Hz, c slightly increased because of the viscoelastic properties of the wall tissues. Between 64 and 200 Hz, c was relatively constant and less than the free-field speed of sound (c0 = 340 m/s), with values smaller at TS (140 +/- 39 m/s) than at TN (172 +/- 35 m/s). Above 200 Hz, c exceeded c0 and displayed two maxima at approximately 300 and approximately 700 Hz, with values of approximately 360 and approximately 550 m/s, respectively. For f > 1,400 Hz, c approached c0. We provide evidence that the two maxima in c were the result of the two-compartment behavior of the wall tissues, i.e., the separate cartilaginous and soft tissues. A nonrigid tube model with its wall impedance composed of two series resistance, compliance, and inertance pathways in parallel simultaneously fits c, Zop, and Zcl well and hence provides a link among these data. By use of the relationship between volumetric wall parameters and the tracheal geometry, separate material properties such as viscosity and Young's modulus of both the soft tissue (approximately 1 cmH2O.s and approximately 0.26 x 10(4) cmH2O, respectively) and the cartilage (approximately 3.7 cmH2O.s and approximately 2 x 10(4) cmH2O, respectively) were estimated. These results indicate that measures of c and Zop or Zcl data over these frequencies provide information about the dynamic mechanical properties of both the soft tissue and cartilage in the airway walls.

A pulse tube cryocooler operating at 120Hz with 3.5MPa average pressure achieved a no-load temperature of about 49.9K and a cooldown time to 80K of 5.5min. The net refrigeration power at 80K was 3.35W with an efficiency of 19.7% of Carnot when referred to input pressure-volume (PV or acoustic) power. Such low temperatures have not been previously achieved for operating frequencies above 100Hz. The high frequency operation leads to reduced cryocooler volume for a given refrigeration power, which is important to many applications and can enable development of microcryocoolers for microelectromechanical system applications. 041b061a72


Welcome to the group! You can connect with other members, ge...


  • deisaray jones
  • Andres Faria
    Andres Faria
  • Проверено Администрацией! Превосходный Результат!
    Проверено Администрацией! Превосходный Результат!
  • Asher Ward
    Asher Ward
Group Page: Groups_SingleGroup
bottom of page